
Negative Idiosyncratic Returns
in Optimized Portfolios

Ludger Hentschel

September 12, 2025

Abstract
Empirically, portfolios constructed via mean-variance optimization often exhibit negative
idiosyncratic return contributions: the realized returns attributable to residual (non-factor)
exposures are negative, on average, over time. This is especially surprising under the
standard fundamental factor model, where residual returns are assumed to be zero-mean,
uncorrelated with factors, and uncorrelated across assets.

We show that persistent deviations from zero idiosyncratic returns are indications of
omitted factors and describe three ways of correcting this issue. Even without knowing
the true omitted factors, we know that their component aligned with the direction of
trade contains alpha. First, we can add an appropriate factor with alpha to the alpha
factor model. Second, to the extent trading costs drive the deviations, improved alpha
scaling may help. Third, we can add a constraint or penalty for idiosyncratic risk that is not
part of the alpha factors. All of these methods can be implemented in standard portfolio
optimization software.
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1 Introduction

Optimized portfolios often exhibit negative idiosyncratic (residual) return
contributions. The realized returns attributable to residual (non-factor)
exposures are negative, on average, over time. This is surprising under the
standard assumptions of a fundamental factor model, which treats residual
returns as independent across assets, mean-zero, and uncorrelated with
factor returns. Under those assumptions, residual exposures should not
contribute to expected performance in either direction, so their average
contribution should be close to zero.

If a manager’s alphas extend beyond the span of the factor model’s factor
space, residual returns can legitimately contribute to performance, positively
or negatively, because they reflect additional sources of systematic return.
However, the puzzle is sharpest when the optimizer’s target lies entirely in
the factor space. This occurs, for example, when starting from a composite
of pure factor portfolios and using the corresponding implied alphas. In
the frictionless baseline, the optimal portfolio then coincides with the factor
composite and earns zero idiosyncratic return by construction.

In practice, trading costs and portfolio constraints force deviations from
the factor space. When average residual contributions are persistently nega-
tive, this indicates a systematic alignment between the residual exposures
we actually hold and future residual returns. This is equivalent to saying
that there is an omitted priced factor in residual space. This note formalizes
that interpretation, proposes two statistical tests to distinguish “bad luck”
from a real omitted factor, and presents practical remedies.

Shifts in factor weights due to costs or constraints can also occur. These
remain in factor space and therefore do not produce idiosyncratic returns.
They may still be important to monitor, but they are not the focus here. For
methods to constrain relative factor exposures during portfolio optimization,
see Hentschel (2025b). We focus exclusively on diagnosing and addressing
the idiosyncratic return issue.

Reducing the impact of negative idiosyncratic returns is not free, it is
likely to increase transaction costs. The objective is to find a better balance
by showing the optimizer more realistic performance costs, via expected
returns and risks, in addition to the transaction costs.
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2 Negative Idiosyncratic Returns

2 Factor Model and Implied Alphas
Let rt+1 denote the (n× 1) vector of asset returns from t to t+1. We assume
a K-factor fundamental model

rt+1 = Xtbt+1 + εt+1, (1)

where Xt is the (n× K) matrix of factor exposures at t; bt+1 is the (K× 1)
vector of factor returns over [t, t+1]; and εt+1 is the (n× 1) vector of residual
returns. The residuals εt+1 are assumed to be mean-zero, independent across
assets, and uncorrelated with bt+1.

2.1 Factor Risk Model
The corresponding return covariance is

Σt = XtΩtX ′
t + Dt, (2)

where Ωt is the (K × K) factor covariance matrix and Dt is the diagonal
(n× n) matrix of residual variances. All common co-movement is captured
by the factors; Dt measures the risk unique to each asset.

2.2 Pure Factor Portfolios
From Xt we can construct the K pure factor portfolios

Wt = Xt
(
X ′

t Xt
)−1 (3)

or

Wt = Γ1/2
t Xt

(
X ′

t ΓtXt
)−1 (4)

The first factor portfolios are the result of ordinary least squares factor
regressions. The second factor portfolios are the result of weighted least
squares factor regressions with weights Γt. Common weights come from
idiosyncratic risk, Γt = D−1

t , or proxies for this, like market capitalization.
Column j of Wt is the (n× 1) weight vector with unit exposure to factor
j and zero exposure to all other factors. Any portfolio in factor space is a
linear combination of these columns.

2.3 Target Portfolio
Let the (n× 1) vector ŵt represent the manager’s desired factor composite,
a linear combination of pure factor portfolios in the columns of Wt.
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Sharpe (1974) shows that the implied alphas reproducing ŵt under mean-
variance optimization are

α̂t = λ Σt ŵt, (5)

where λ > 0 is the risk-aversion parameter.
Using these alphas in a Markowitz (1952) mean-variance optimization

without frictions yields exactly the factor composite,

w⋆
t = λ−1Σ−1

t α̂t = ŵt. (6)

Thus, the optimized portfolio equals the target factor composite in the
absence of costs or constraints.1

2.4 Residual Exposures
We define the projection matrix onto factor space as

PX = Xt(X ′
t Xt)−1X ′

t (7)

or

PX = Γ1/2
t Xt(X ′

t ΓtXt)−1X ′
t Γ1/2

t . (8)

The first form is appropriate for ordinary least squares (OLS); the second
for weighted least squares (WLS). In the remainder, we will refer to PX

generically and the reader should choose the form that corresponds to the
factor model regressions.

The residual, non-factor, portion of a portfolio w is

(I − PX)w. (9)

This computation is equivalent to finding the residuals from cross-sectionally
regressing the portfolio weights w on the exposures for all of the factors X,
either using ordinary or weighted least squares.

For any factor portfolio wt in Wt, including the target factor composite
ŵt, (I − PX)w = 0 because

(I − PX)Xt
(
X ′

t Xt
)−1 = 0. (10)

1 In general, the optimized portfolio is a levered version of the target portfolio unless we
choose the the same coefficient of risk aversion in the optimization and when computing
implied alphas.
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This is also true for the weighted portfolios. For factor portfolios, the
idiosyncratic exposures and return contributions are exactly zero.

3 Residual Returns from Costs and Constraints
With trading frictions, the optimizer solves the Markowitz (1952) mean-
variance problem

w⋆
t = arg max

w∈W

{
w′α̂t −

λ

2
w′Σtw− τ(w, wt−1)

}
. (11)

Here, W encodes portfolio constraints (e.g., leverage limits, position bounds,
sector limits, turnover caps); and τ(w, wt−1) measures total transaction
costs as a function of the trade w−wt−1.

In general, w⋆
t ̸= ŵt, so the residual portfolio

w⊥
t ≡ (I − PX)w⋆

t (12)

is nonzero, which introduces idiosyncratic returns. The idiosyncratic return
contribution for [t, t+1] is

rid
t+1 = (w⊥

t )′εt+1. (13)

If εt+1 is truly iid, mean-zero, and independent of w⊥
t , then

E[rid
t+1] = 0. (14)

Changes in factor weights alone cannot generate idiosyncratic returns,
since they remain in factor space. Only deviations into residual space can
do so.

4 Omitted Factor Interpretation
Persistent rid

t+1 < 0 implies a systematic alignment between w⊥
t and future

εt+1. That indicates the presence of a priced residual factor w⊥
t , to which

the portfolio has systematic and costly exposure.

We can also link this omitted factor interpretation to trades. Define the
trade gap between the target and the incoming portfolio

gt ≡ ŵt −wt−1. (15)
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Project this into residual space

g⊥t ≡ (I − PX)gt. (16)

This is the part of the desired trade that lies outside factor space. Costs
and constraints often prevent us from fully closing g⊥t , so the implemented
residual exposure w⊥

t tends to align with it. Moreover, the exposure is likely
negative because the portfolio does not trade all the way to the target ŵt in
the presence of costs and constraints.

If

E[(g⊥t )′εt+1] > 0, (17)

then g⊥t behaves like a priced residual factor with positive expected return.
The optimizer implicitly holds negative exposure to this factor. It does so
freely because it values the exposure at zero ex ante. But the portfolio incurs
a systematic drag ex post because it has negative exposure to a factor with
positive average return.

The main problem is not that there is an omitted factor but that the
optimizer assigns zero expected return to an omitted factor with positive re-
turns and sees relatively small risk in these exposures because they diversify
across a large number of securities.

5 Tests for an Omitted Factor
We recommend two tests for omitted factors, starting from the same factor
model as used in the risk model and portfolio construction.

5.1 Test 1: Time-Series Mean of Idiosyncratic Returns
Compute the realized idiosyncratic return each period

rid
t+1 = w′

tεt+1. (18)

Test

H0 : E[rid
t+1] = 0 (19)

using the sample mean rid and a Newey and West (1987) t-statistic with
lags matched to the portfolio holding period. A significantly negative mean
indicates a systematic residual drag. Winsorization may be applied to reduce
the impact of outliers.
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5.2 Test 2: Full Fama-MacBeth with Gap Exposure
At each t, run the cross-sectional Fama and MacBeth (1973) regression

ri,t+1 = Xi,tbt + xgap
i,t βgap

t + ei,t+1, (20)

where ri,t+1 is the return on asset i; Xi,t is the (1× K) factor exposure vector;
and xgap

i,t is the residual-space gap exposure

xgap
t ≡ (I − PX)(ŵt −wt−1). (21)

Using the projected gap ensures factor returns and pure factor portfolios
remain unchanged relative to a regression without it. We should run this
augmented regression using the same weighting method we use in the main
factor regressions and in the projection PX . We should also apply the same
cross-sectional standardization to xgap

t that we apply to the other factors.
Test

H0 : E[βgap
t ] = 0 vs. HA : E[βgap

t ] > 0 (22)

with Newey and West (1987) standard errors on the {β̂gap
t } series.

Including xgap
t alongside Xt controls for all model factors and isolates

incremental pricing of the gap exposure. Projecting prevents leakage into
factor returns and avoids multicollinearity.

A significantly positive average value of βgap
t indicates that residual

trade gaps, the part of the desired trade blocked by costs or constraints,
are systematically aligned with future residual returns. This supports the
interpretation of a positively priced omitted factor in residual space.

The time-series test measures whether the portfolio systematically gains
or loses from residual exposures and should use the actual (unstandardized)
portfolio weights. The Fama-MacBeth regression tests whether gap exposure
is priced in the cross-section and may use standardized (z-scored) exposures
for numerical stability and interpretability. The two tests answer related but
distinct questions: the first focuses on realized performance, the second on
cross-sectional pricing.

6 Remedies
There are occasions when noticing an omitted factor provides an impetus
for modeling factors that we suspected previously. Identifying the omitted
factor and including it in the fundamental factor model is the preferred
solution to this problem.
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Generally, however, the factors are omitted because we don’t know what
they are. Without identifying the factors, we cannot include them in the
factor model. Here we focus on solutions to the problem of negative
idiosyncratic returns that do not identify the omitted factor.

6.1 Auxiliary Gap Factor
Although we may not have a fundamental interpretation of the omitted
factor, we know that the difference between the target portfolio and the
actual portfolio has historically aligned with the omitted factor.

We can use the projected trade gap in residual space

xgap
t = (I − PX)(ŵt −wt−1) (23)

as a proxy for the omitted factor.
It is common to standardize factor exposures to have unit cross-sectional

variance (or norm) at each time step. When working with the projected
trade gap xgap

t as a proxy factor, we recommend standardizing it as well.
This improves the comparability and stability of the estimated αgap across
time and portfolios.

Moreover, we can assign a positive alpha to the standardized factor,
αgap > 0, and include this in our alpha model

αt = α̂t + xgap
t αgap. (24)

This targets exactly the part of the trade that causes idiosyncratic drag when
unclosed. Assigning a positive alpha to this gap encourages faster closure
without interfering with factor moves.

We can estimate αgap from data using the augmented Fama and MacBeth
(1973) regression and calibrate its magnitude small relative to transaction
costs to avoid over-penalizing.2 In the absence of costs and constraints,
xgap

t = 0 and the auxiliary factor has no effect.
As with any return factor, we include both the expected return and the

risk of the gap factor when incorporating it into the optimization. The
expected return is captured by αgap, which is estimated from past returns.
The risk is measured using the residual variance of the gap exposure,
(xgap

t )′Dtx
gap
t , consistent with the factor model’s idiosyncratic risk metric.

This ensures the optimizer accounts for both the performance drag and the
uncertainty associated with holding residual exposures.

2 Appendix B provides details for bounding the alpha for this proxy factor.
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Optimization over Time

Although the auxiliary gap alpha αgap may have limited impact in a single-
period optimization, especially when transaction costs dominate, it plays a
more important role over time. In a one-shot optimization, the optimizer
generally still chooses to only partially close the trade gap (ŵt−wt− 1) due
to costs. The inclusion of xgap

t αgap marginally encourages a move toward
the target, but the result may not differ a great deal from the friction-aware
solution without this term.

However, in a sequence of optimizations over time, this small incentive
compounds. Without the gap alpha, the portfolio may drift away from
the factor target ŵt and remain there, as closing the gap is continually
penalized by costs and receives no reward. With the gap alpha included,
the optimizer sees a persistent positive incentive to reduce the residual gap,
leading to a gradual reversion toward the target. This persistent âĂIJpullâĂİ
can materially alter the portfolio trajectory over time, especially when the
target moves gradually.

In this sense, the gap alpha introduces mean-reversion dynamics in resid-
ual space that are otherwise absent from standard optimization formulations.
It makes the target not only an ideal but an attractor, guiding the optimized
portfolio back toward factor space even when frictions create temporary
deviations.

6.2 Liquidity-Sensitive Alpha Scaling
Alternatively, we can scale alphas for costly or illiquid names

α̃i,t = siα̂i,t, si > 1 for more costly/illiquid names. (25)

This pre-compensates for frictions where trading is slowest. We should
use this cautiously. If no omitted factor is present, scaling can induce
overtrading.

Other problems associated with inefficient alpha scaling may not manifest
as negative idiosyncratic returns. Hentschel (2025a) describes how to scale
alphas based on asset characteristics.

6.3 Idiosyncratic Risk Constraints and Penalties
In a fundamental factor model, a pure factor portfolio w(k) is designed to
have unit exposure to factor k and zero exposure to all other factors. This
does not mean that the portfolio has no idiosyncratic (residual) risk. In fact,
because the model’s residual covariance matrix Dt is diagonal but nonzero,
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each pure factor portfolio has a positive residual variance

(w(k))′Dtw(k) > 0. (26)

Even if a portfolio is pure with respect to factors, it still carries stock-specific
noise that the model’s factors cannot explain, unless the factor portfolio
holds a very large number of positions.

Raw Idiosyncratic Risk Constraints Distort Factor Exposures

A natural idea is to put a cap on the portfolio’s idiosyncratic risk, for
example

w′Dtw ≤ σ2
gap. (27)

This constraint limits the total residual standard deviation of the portfolio
w. But it applies equally to the built-in residual variance in the pure factor
portfolios themselves, and any additional residual variance from deviations
outside the factor space.

Since different pure factor portfolios have different levels of inherent
idiosyncratic variance, often much higher for style factors such as value,
size, or volatility than for market or sector factors, constraint equation (27)
can create unintended effects. The optimizer is forced to tilt away from
high-idiosyncratic-variance factors just to stay within the budget τ. The
result is a portfolio whose factor mix is distorted relative to the intended
factor composite ŵt.

A raw idiosyncratic risk limit doesn’t distinguish between “good” id-
iosyncratic risk (the kind that’s just part of the factor definitions) and “extra”
idiosyncratic risk (from implementation frictions). As a result, it can unin-
tentionally water down the factor bets we actually want.

6.4 Projection-Based Constraint on Idiosyncratic Risk
The solution is to measure idiosyncratic risk in the same metric in which
the pure factor portfolios are residual-free. This is the metric used in the
weighted least squares (WLS) regressions that define the pure factor returns
in the risk model.

Let Γ be the symmetric positive-definite weighting matrix used in the
factor-model regressions. We do not assume Γ = D−1; Γ can reflect any rea-
sonable scheme (residual-precision, liquidity, market-cap, or some hybrid).
The key idea is to measure and constrain idiosyncratic exposure in the same
metric that defines the factor space in estimation.
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Define the Γ-weighted projection onto the factor space spanned by Xt:

PX = Xt
(
X ′

t ΓXt
)−1X ′

t Γ, w⊥
t ≡ (I − PX)wt. (28)

Here w⊥
t is the part of the portfolio that lies outside factor space, defined

consistently with the regression metric.

To measure idiosyncratic risk, use a positive semidefinite matrix Ḋt. The
natural choice is Ḋt = Dt, the residual covariance from the factor model.
Then the residual (idiosyncratic) variance of wt is

Varid(wt) = (w⊥
t )′Dtw⊥

t = w′
t(I − PX)′Dt(I − PX)wt. (29)

More generally, if we prefer to budget residual risk in another metric
(e.g., liquidity-scaled idiosyncratic risk), set Ḋt ≽ 0 and replace Dt by Ḋt in
equation (29). The projection-based idiosyncratic risk constraint is then

w′
t(I − PX)′Ḋt(I − PX)wt ≤ σ2

gap, (30)

This limits idiosyncratic risk because it measures variance in the chosen risk
metric.

Some optimizers may not accept such risk constraints using a second
covariance matrix. In these cases, we can augment the regular covariance
matrix with an additional projected idiosyncratic variance matrix and run
the optimization. The augmented covariance matrix requires some recal-
ibration of risk aversion or risk targets for the portfolio. The augmented
optimization is

max
wt

w′
tαt −

1
2

λ w′
tΣ̃twt (31)

Σ̃t = Σt + λD(I − PX)′Dt(I − PX), (32)

where λ is the coefficient of risk aversion and λD ≥ 0 controls the importance
of the idiosyncratic risk. This covariance is similar to the augmented risk
model of Saxena and Stubbs (2015) but respects the weighting method of
factor regressions.

Any w ∈ col(Xt) satisfies (I − PX)w = 0, so combinations of pure factor
portfolios do not consume any part of the idiosyncratic risk budget in
equation (30). The constraint or penalty acts only on the extra residual
exposure beyond factor space, preventing penalties for pure factors with
relatively high idiosyncratic risk, which occurs if we simply limit overall
idiosyncratic risk.
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The projection-based constraint equation (30) is the preferred method
when the goal is to preserve the factor mix while limiting only the residual
risk arising from implementation frictions. A constraint on raw idiosyn-
cratic risk, like equation (27), mixes the inherent residual risk of the pure
factor portfolios with the extra residual risk from true deviations. By con-
trast, equation (30) first removes the factor-space component (via PX) and
only limits what remains. This preserves the intended factor mix while
controlling the residual risk that arises from implementation frictions.

6.5 Combined Approach
The mean-variance optimization in equation (31) considers both expected
returns and covariances. For return factors, we generally show both the
expected returns and covariances. Here, for the omitted factors, we can
do the same by using both the alpha updates from equation (24) and
the augmented covariance from equation (32) in portfolio optimization.
Neither the updated alpha nor the augmented covariance by itself are fair
or sufficient corrections for the omitted factor problem.

7 Conclusion
When the target portfolio lies in factor space and residuals are iid mean-
zero, optimized portfolios should have near-zero average idiosyncratic
contributions. Persistent negative contributions imply a priced residual
factor – an omitted factor in residual space.

Two simple tests, a HAC-robust mean test of portfolio residual returns
and a Fama-MacBeth regression with projected gap exposures, differentiate
bad luck from a genuine omitted factor.

If evidence supports the omitted factor view, remedies include liquidity-
sensitive alpha scaling, adding an alpha gap factor, and using constraints or
penalties on projection-based idiosyncratic risk.3

Reducing the impact of negative idiosyncratic returns is likely to increase
transaction costs. A good optimization includes realistic performance mea-
sures for idiosyncratic returns, via expected returns and risks, in addition
to the transaction costs. A balanced presentation is more likely to lead to a
truly optimal portfolio.

3 Appendix A and appendix B provide further measurement and calibration details.
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A Net Return Gap Diagnostic
The net return gap is a practical diagnostic for gauging whether the return
shortfall from deviating from the frictionless target ŵt is broadly in line
with measured transaction cost savings. It does not prove or refute the
omitted-factor interpretation, but can help localize issues (e.g., cost-model
miscalibration, constraint bottlenecks).

We define the idiosyncratic return gap (target minus actual) as

∆Rid
t+1 = (ŵt −wt)′εt+1, (33)

and the net friction-adjusted version as

∆Rnet
t+1 = (wt − ŵt)′εt+1 +

(
TC t+1 − TCtarget

t+1
)
, (34)

where TC t+1 = cost(wt−wt−1) is the cost actually incurred and TCtarget
t+1 =

cost(ŵt −wt−1) is the hypothetical cost of fully reaching the target. Thus,
∆Rnet

t+1 measures the net (return minus cost) benefit of implementing wt

instead of ŵt over [t, t+1].
Values near zero suggest a cost/return balance; persistently negative

values imply return shortfall not justified by cost savings; persistently
positive values suggest that costs are understated or that the optimizer is
over-trading.

A.1 Estimation and Inference
We estimate the time-series mean

∆Rnet =
1
T

T−1

∑
t=0

∆Rnet
t+1 (35)

and test H0 : E[∆Rnet
t+1] = 0 using a NeweyÐWest standard error matched

to the trading horizon. As with idiosyncratic returns, winsorizing ∆Rnet
t+1

before estimation can improve robustness.
A balanced or small mean net gap does not guarantee that no omitted

factor existsÑit only says the realized shortfall matched measured costs. The
omitted-factor tests in the main text remain the primary tool for determining
whether residual exposures have nonzero expected returns.

B Upper Bound on Gap-Factor Alpha
We sometimes consider assigning an alpha to the pure gap factor

xgap
t = (I − PX)gt, gt ≡ ŵt −wt−1, (36)
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where PX is the (weighted) projection matrix onto the factor space of the
risk model and gt is the trade required to move from the current portfolio
wt−1 to the frictionless target ŵt.

By construction, xgap
t lies entirely in the residual space. A positive alpha

αgap > 0 attached to this factor encourages the optimizer to close residual-
space gaps, pulling the solution toward the target.

We seek an upper bound (larger than we would use in practice) for αgap:
the value that would move the optimizer exactly back to the target portfolio
in a single rebalancing step, assuming no other constraints bind. This is an
extreme case – in reality, such a strong incentive would cause over-trading.

However, the bound is diagnostically valuable if the historically estimated
αgap for the gap factor is close to the bound, the optimizer is behaving
as if closing the gap is extremely costly. If the estimate is far from the
bound, there is room to make the alpha more positive to reduce persistent
residual exposures without overshooting. Bounds are also valuable in many
numerical searches, in case we wish to tune or optimize the gap alpha
numerically.

B.1 Quadratic Costs

Suppose the optimizer solves

max
wt

w′
t
(
α̂t + αgapxgap

t
)
− λ

2
w′

tΣwt −
1
2
(wt −wt−1)′Q(wt −wt−1), (37)

where α̂t are the implied alphas from the target portfolio, Σ is the factor-
model covariance matrix, Q ⪰ 0 encodes quadratic trading costs, and λ > 0
is the risk-aversion parameter. The quadratic trading costs follow Almgren
and Chriss (2001) and Almgren (2003).

If αgap = 0, the first-order condition is

λΣwt + Q(wt −wt−1) = α̂t. (38)

Since α̂t = λΣŵt, this yields

wt = (λΣ + Q)−1(λΣŵt + Qwt−1
)
. (39)

With αgap ̸= 0, the FOC becomes

λΣwt + Q(wt −wt−1) = λΣŵt + αgapxgap
t . (40)
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Requiring wt = ŵt gives

Q(ŵt −wt−1) = αgapxgap
t , (41)

or

Qgt = αgapxgap
t . (42)

Premultiplying by (xgap
t )′ and using xgap

t ̸= 0 yields the exact alpha that
closes the gap in one step

αgap
max =

(xgap
t )′Qgt

(xgap
t )′xgap

t
. (43)

If Σ = diag(σ2
i ) and Q = diag(qi), the optimal frictionless trade toward

the target in one period without a gap penalty is

wi,t − wi,t−1 =
λσ2

i
λσ2

i + qi

(
ŵi,t − wi,t−1

)
. (44)

To close the full gap in one step, the gap alpha must satisfy

αgap
max,i = qi

ŵi,t − wi,t−1

xgap
i,t

. (45)

This holds name-by-name; in practice, we would calibrate αgap from the
portfolio-level projection in (43).

B.2 Linear Costs
If transaction costs are proportion to bid-ask spreads, the costs are pro-
portional to trade size, TC(∆w) = c′|∆w|. For general Σ, the optimality
condition produces a polyhedral no-trade region

∣∣λ(Σ(wt − ŵt))i
∣∣ ≤ ci ⇒ wi,t = wi,t−1. (46)

If Σ = diag(σ2
i ), the no-trade condition simplifies to

∣∣λσ2
i (wi,t − ŵi,t)

∣∣ ≤ ci. (47)

The one-step bound on αgap is simply the shift needed to push each i outside
its no-trade band

αgap
max,i = sign(gi,t)ci + λσ2

i gi,t. (48)
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B.3 Square-Root Impact Costs

For “square-root” impact, trading costs are TC(∆wi) = ki|∆wi|3/2, and
marginal cost is proportional to |∆wi|1/2. The optimality condition for
diagonal Σ is

λσ2
i (ŵi,t − wi,t) = ki sign(∆wi)|∆wi|1/2. (49)

Solving for ∆wi in closed form is straightforward

∆wi =

(
λσ2

i
ki

)2 (
ŵi,t − wi,t

)2. (50)

The one-step bound on αgap is the alpha shift that induces exactly this ∆wi

when the gap equals ŵi,t − wi,t−1.

Among these models, quadratic costs with general Σ yield the most
tractable and interpretable upper bound for αgap. The diagonal cases are
algebraically simple and help illustrate the mechanics of the bound, even
though real-world risk models have substantial off-diagonal structure. Al-
though we cannot solve for the upper bound on alpha analytically, we can
find this bound via numerical optimization.

C AugmentedCovariance in Standard Factor Form
The augmented covariance matrix in equation (32) penalizes residual expo-
sure through an additional variance term

Σ̃t = Σt + λD(I − PX)′Dt(I − PX), (51)

where Σt = XtΩtX ′
t + Dt is the standard factor-model covariance matrix.

This augmented matrix does not initially appear to conform to the stan-
dard 3-part representation expected by many optimization platforms, which
require

1. an n× K matrix of factor exposures Xt ,
2. a K× K factor covariance matrix Ωt,
3. and an n× n diagonal matrix of idiosyncratic variances Dt (possibly

delivered as an n× 1 vector),

so that the software can construct

Σt = XtΩtX ′
t + Dt. (52)
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Representing a factor-based covariance matrix in its constituent form can
provide large computational speed advantages in matrix inversion, espe-
cially when the covariance matrix is large.

The augmented covariance matrix Σ̃t can be rewritten in exactly this
form by introducing an additional synthetic factor that captures the residual
penalty.

C.1 Gap Direction in Residual Space
Let the gap vector be

xgap
t = (I − PX)(ŵt −wt−1), (53)

the part of the desired trade that lies in residual space. Define a unit-norm
residual direction

zt ≡
xgap

t
∥xgap

t ∥
, so that ∥zt∥ = 1. (54)

This synthetic factor has exposure only in residual space. Its risk contri-
bution under Dt is

vgap
t ≡ z′tDtzt. (55)

C.2 Augmented Factor Model
We now define an augmented exposure matrix

X̃t = [Xt zt], (56)

which has dimension n × (K + 1), and an augmented factor covariance
matrix

Ω̃t =

[
Ωt 0
0 λDvgap

t

]
, (57)

which has dimensions (K + 1)× (K + 1) and is positive semidefinite. As
before, λD measures the importance of the additional risk and requires
calibration.

Then the total covariance matrix can be written

Σ̃t = XtΩtX ′
t + Dt + λDvgap

t ztz′t (58)

= X̃tΩ̃tX̃ ′
t + Dt. (59)
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Thus, the augmented covariance matrix Σ̃t can be expressed in standard
factor form with

1. an n× (K + 1) matrix of factor exposures X̃t,
2. a (K + 1)× (K + 1) factor covariance matrix Ω̃t,
3. and an n× n diagonal matrix of idiosyncratic variances Dt (possibly

delivered as an n× 1 vector).
This reformulation interprets the residual penalty as coming from a syn-

thetic factor with exposure direction zt (purely in residual space), estimated
risk z′tDtzt, and subjective importance λD. Using the same projection matrix
PX as in the main factor regressions ensures that the residual penalty applies
only to directions orthogonal to Xt under the same weighting metric.

This transformation allows standard portfolio optimization software to
implement the residual risk penalty by treating it as a regular return factor
with known exposure and estimated variance.
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